Preview

Kazan Journal of Historical, Linguistic, and Legal Research

Advanced search

Associative dictionary: Methodology of creation and areas of application

https://doi.org/10.26907/2541-7738.2025.5-6.115-130

Abstract

This article reviews a number of studies pertaining to associative linguography, including those conducted with the use of associative dictionaries. It also examines the current state of interdisciplinary applied research focusing on the associative-verbal network, in which a prominent area of scholarly interest is the comparison of associative norms with affective ones. Drawing on data from multiple languages, the extrapolation of the affective and semantic characteristics of words that are associatively related is examined. Significant advances in our understanding of the associative network properties have been achieved by foreign scholars through the development of affective and semantic norm databases. For the Russian language, databases of affective parameters (VAD) and abstractness/concreteness ratings have recently been compiled. Based on the systematized foreign and national approaches to the creation of associative dictionaries, the structure of a thesaurus-type dictionary entry for the New Associative Dictionary with markup according to the affective and semantic parameters is described.

About the Author

Yu. A. Volskaya
Kazan Federal University
Россия

Yulia A. Volskaya, Cand. Sci. (Philology), Associate Professor, Department of Applied and Experimental Linguistics

Kazan, Russia



References

1. Kent G.H., Rosanoff A.J. Review of A Study of Association in Insanity. Grace Helen Kent and A.J. Rosanoff. American Journal of Insanity, Vol. LXVII, No. 1, pp. 37–96 // J. Philos., Psychol. Sci. Methods. 1910. V. 7, No 25. P. 695–696. https://doi.org/10.2307/2013279.

2. Russell W.A., Jenkins J.J. The complete Minnesota norms for responses to 100 words from the Kent–Rosanoff word association test. USN Technical Report No 11. Office of Naval Research Project N8-onr066216. Minneapolis, MN: Univ. of Minnesota, 1954. 42 p.

3. De Deyne S., Navarro D.J., Storms G. Better explanations of lexical and semantic cognition using networks derived from continued rather than single-word associations // Behav. Res. Methods. 2013. V. 45, No 2. P. 480–498. https://doi.org/10.3758/s13428-012-0260-7.

4. Nelson D.L., McEvoy C.L., Schreiber T.A. The University of South Florida free association, rhyme, and word fragment norms // Behav. Res. Methods, Instrum., Comput. 2004. V. 36, No 3. P. 402–407. https://doi.org/10.3758/BF03195588.

5. Lucas M. Semantic priming without association: A meta-analytic review // Psychon. Bull. Rev. 2000. V. 7, No 4. P. 618–630. https://doi.org/10.3758/BF03212999.

6. Deese J. The Structure of Associations in Language and Thought. Baltimore, MD: Johns Hopkins Press, 1965. xiii, 216 p.

7. Landauer T.K., Dumais S.T. A solution to Plato’s problem: The latent semantic analysis theory of acquisition, induction and representation of knowledge // Psychol. Rev. 1997. V. 104, No 2. P. 211–240. https://doi.org/10.1037/0033-295x.104.2.211.

8. Collins A.M., Quillian M.R. Retrieval time from semantic memory // J. Verbal Learn. Verbal Behav. 1969. V. 8, No 2. P. 240–247. https://doi.org/10.1016/S0022-5371(69)80069-1.

9. Vankrunkelsven H., Verheyen S., Storms G., De Deyne S. Predicting lexical norms: A comparison between a word association model and text-based word co-occurrence models // J. Cognit. 2018. V. 1, No 1. Art. 45. https://doi.org/10.5334/joc.50.

10. Lupyan G., Abdel Rahman R., Boroditsky L., Clark A. Effects of language on visual perception // Trends Cognit. Sci. 2020. V. 24, No 11. P. 930–944. https://doi.org/10.1016/j.tics.2020.08.005.

11. Shaposhnikova I.V. The Russian language personality in the current diachrony: A new associativeverbal database (2014–2021). RUDN Journal of Language Studies, Semiotics and Semantics, 2022, vol. 13, no. 3, pp. 648–665. https://doi.org/10.22363/2313-2299-2022-13-3-648-665. (In Russian)

12. Pishchal’nikova V.A., Dubkova O.V., Cong Fenglin, Yao Zhipeng. Kartina mira kitaitsev: teoriya i praktika nauchnogo issledovaniya [The Worldview of the Chinese: Theory and Practice of Scientific Research]. Moscow, R. Valent, 2020. 240 p. (In Russian)

13. Kirilina A.V., Terentii L.M. Linguistic analyses of interethnic tensions in internet discourse. Journal of Psycholinguistics, 2016, no. 27, pp. 130–139. (In Russian)

14. Rudakova A.V. To the description of psycholinguistic meaning of the word. Russian Language Studies, 2014, no. 3, pp. 36–48. (In Russian)

15. Ovchinnikova I.G. Syntagmatic errors in Russian speech: Interpretation with respect to the current model of mental lexicon. Journal of Psycholinguistics, 2018, no. 2, pp. 84–98. https://doi.org/10.30982/2077-5911-2-84-98. (In Russian)

16. Planchuelo C., Buades-Sitjar F., Hinojo J.A., Duñabeitia J.A. The nature of word associations in sentence contexts // Exp. Psychol. 2022. V. 69, No 2. P. 104–110. https://doi.org/10.1027/1618-3169/a000547.

17. Rossiiskaya psikholingvistika: itogi i perspektivy (1966–2021 gg.) [Russian Psycholinguistics: Results and Prospects (1966–2021)]. Sternin I.A., Ufimtseva N.V., Myagkova E.Yu. (Eds.). Moscow, Inst. Yazykozn. – MMA, 2021. 626 p. (In Russian)

18. Litvinova T.A., Zavarzina V.A., Kotlyarova E.S., Lyubova S.G. Mapping the field of word association research using text mining approach // Proc. 2023 5th Int. Conf. on Information Technology and Computer Communications (ITCC’23). New York, NY: Assoc. Comput. Mach., 2023. P. 90–98. https://doi.org/10.1145/3606843.3606858.

19. Gruenenfelder T.M., Recchia G., Rubin T., Jones M.N. Graph-theoretic properties of networks based on word association norms: Implications for models of lexical semantic memory // Cognit. Sci. 2015. V. 40, No 6. P. 1460–1495. https://doi.org/10.1111/cogs.12299.

20. De Deyne S., Navarro D.J., Collell G., Perfors A. Visual and affective multimodal models of word meaning in language and mind // Cognit. Sci. 2021. V. 45, No 1. Art. e12922. https://doi.org/10.1111/cogs.12922.

21. Zemla J.C., Cao K., Mueller K.D., Austerweil J.L. SNAFU: The Semantic Network and Fluency Utility // Behav. Res. Methods. 2020. V. 52, No 4. P. 1681–1699. https://doi.org/10.3758/s13428-019-01343-w.

22. Levy O., Kenett Y.N., Oxenberg O., Castro N., De Deyne S., Vitevitch M.S., Havlin Sh. Unveiling the nature of interaction between semantics and phonology in lexical access based on multilayer networks // Sci. Rep. 2021. V. 11, No 1. Art. 14479. https://doi.org/10.1038/s41598-021-93925-y.

23. Kumar A.A. Semantic memory: A review of methods, models, and current challenges // Psychon. Bull. Rev. 2021. V. 28, No 1. P. 40–80. https://doi.org/10.3758/s13423-020-01792-x.

24. Castro N., Siew C. Contributions of modern network science to the cognitive sciences: Revisiting research spirals of representation and process // Proc. R. Soc. A. 2020. V. 476, No 2238. Art. 20190825. https://doi.org/10.1098/rspa.2019.0825.

25. Wulff D.U., De Deyne S., Aeschbach S., Mata R. Using network science to understand the aging lexicon: Linking individuals’ experience, semantic networks, and cognitive performance // Top. Cognit. Sci. 2022. V. 14. No 1. P. 93–110. https://doi.org/10.1111/tops.1258.

26. Zannino G.D., Perri R., Teghil A., Caltagirone C., Carlesimo G.A. Associative agreement as a predictor of naming ability in Alzheimer’s disease: A case for the semantic nature of associative links // Front. Behav. Neurosci. 2018. V. 11. Art. 261. https://doi.org/10.3389/fnbeh.2017.00261.

27. Arias-Trejo N., Bel-Enguix G., Barrón-Martínez J.B., Minto-García A., Arias-Carrión O., GonzálezGonzález M.M. Word association norms in Mexican older adults // Ment. Lexicon. 2022. V. 17, No 2. P. 155–177. https://doi.org/10.1075/ml.22001.ari.

28. Leont’ev A.A., Klimenko A.P., Suprun A.E., et al. Slovar’ assotsiativnykh norm russkogo yazyka [Dictionary of Associative Norms of the Russian Language]. Leont’ev A.A. (Ed.). Moscow, Izd. Mosk. Univ., 1977. 192 p. (In Russian)

29. Karaulov Yu.N. The Russian Associative Dictionary as a new linguistic source and a tool for analyzing language ability. In: Karaulov Yu.N., Cherkasova G.A., Ufimtseva N.V., et al. Russkii assotsiativnyi slovar’ [Russian Associative Dictionary]. Vol. 1. Moscow, AST, Astrel’, 2002, pp. 750–782. (In Russian)

30. Shaposhnikova I.V., Romanenko A.A. Russkii regional’nyi assotsiativnyi slovar’ (Sibir’ i Dal’nii Vostok) [Russian Regional Associative Dictionary (Siberia and the Far East)]. 2 Vols. Moscow, Mosk. Inst. Lingvist., 2014–2015. (In Russian)

31. Ufimtseva N.V., Cherkasova G.A. Russkii regional’nyi assotsiativnyi slovar’ (Evropeiskaya chast’ Rossii) [Russian Regional Associative Dictionary (European Part of Russia)]. 2 Vols. Moscow, Mosk. Mezhdunar. Akad., 2018–2019. (In Russian)

32. Ufimtseva N.V., Cherkasova G.A., Karaulov Yu.N., Tarasov E.F. Slavyanskii assotsiativnyi slovar’: rus., belorus., bolg., ukr. [Slavic Associative Dictionary: Russian, Belarusian, Bulgarian, and Ukrainian]. Moscow, Mosk. Gos. Lingvist. Univ., 2004. 790, [1] p. (In Russian)

33. Assotsiativnyi slovar’ upotrebitel’noi russkoi leksiki [Associative Dictionary of Common Russian Vocabulary]. Rudakova A.V., Sternin I.A. (Eds.). Voronezh, Istoki, 2011. 187 p. (In Russian)

34. Goldin V.E., Sdobnova A.P., Mart’yanov A.O. Russkii assotsiativnyi slovar’: assotsiativnye reaktsii shkol’nikov I–XI klassov [Russian Associative Dictionary: Associative Reactions of Schoolchildren from Grades I–XI]. 2 Vols. Saratov, Izd. Sarat. Univ., 2011. (In Russian)

35. Kiss G.R., Armstrong C., Milroy R., Piper J. An associative thesaurus of English and its computer analysis // Aitken A.J., Bailey R.W., Hamilton-Smith N. (Eds.) The Computer and Literary Studies. Edinburgh: Edinburgh Univ. Press, 1973. P. 153–165.

36. Warriner A.B., Kuperman V., Brysbaert M. Norms of valence, arousal, and dominance for 13.915 English lemmas // Behav. Res. Methods. 2013. V. 45, No 4. P. 1191–1207. https://doi.org/10.3758/s13428-012-0314-x.

37. Stadthagen-Gonzalez H., Imbault C., Pérez Sánchez M.A., Brysbaert M. Norms of valence and arousal for 14.031 Spanish words // Behav. Res. Methods. 2016. V. 49. P. 111–123. https://doi.org/10.3758/s13428-015-0700-2.

38. Speed L.J., Brysbaert M. Ratings of valence, arousal, happiness, anger, fear, sadness, disgust, and surprise for 24.000 Dutch words // Behav. Res. Methods. 2024. V. 56, No 5. P. 5023–5039. https://doi.org/10.3758/s13428-023-02239-6.

39. Mohammad S.M. NRC VAD Lexicon v2: Norms for valence, arousal, and dominance for over 55k English terms. arXiv Preprint 2503.23547. 2025. https://doi.org/10.48550/arXiv.2503.23547.

40. De Deyne S., Navarro D.J., Perfors A., Brysbaert M., Storms G. The “Small World of Words” English word association norms for over 12.000 cue words // Behav. Res. Methods. 2019. V. 51, No 3. P. 987–1006. https://doi.org/10.3758/s13428-018-1115-7.

41. Okamoto J., Ishizaki Sh. An Associative Concept Dictionary for natural language processing: Text summarization and word sense disambiguation // J. Cognit. Sci. 2011. V. 12. No 3. P. 261–278. https://doi.org/10.17791/jcs.2011.12.3.261.

42. Barrón-Martínez J.B., Arias-Trejo N. Word Association Norms in Mexican Spanish // Span. J. Psychol. 2014. V. 17. Art. Е90. https://doi.org/10.1017/sjp.2014.91.

43. Schulte im Walde S., Borgwaldt S.R. Association norms for German noun compounds and their constituents // Behav. Res. Methods. 2015. V. 47, No 4. P. 1199–1221. https://doi.org/10.3758/s13428-014-0539-y.

44. Lakhzoum D., Izaute M., Ferrand L. Word-association norms for 1.100 French words with varying levels of concreteness // Q. J. Exp. Psychol. 2023. V. 76. No 12. P. 2794–2803. https://doi.org/10.1177/17470218231154454.

45. Peressotti F., Pesciarelli F. Le associazioni verbali PD-DPSS: norme per 294 parole // Giornale Italiano di Psicologia. 2002. V. 29. P. 153–170.

46. Ufimtseva N.V., Cherkasova G.A. Associative lexicography and studies of language consciousness. Philology and Culture, 2014, no. 4 (38), pp. 193–199. (In Russian)

47. Stepykin N.I., Bagana Zh., Slobodova Novakova K., Funikova S.V. Exploring the dynamics of mental lexicon according to the Word Association Test results. Research Result. Theoretical and Applied Linguistics, 2023, vol. 9, no. 2, pp. 19–33. https://doi.org/10.18413/2313-8912-2023-9-2-0-2. (In Russian)

48. Vol’skaya Yu.A. Associative experiment on the material of abstractness/concreteness ratings: A comparative aspect. RUDN Journal of Language Studies, Semiotics and Semantics, 2024, vol. 15, no. 3, pp. 786–801. https://doi.org/10.22363/2313-2299-2024-15-3-786-801. (In Russian)

49. Butakova L.O., Guts E.N. Heuristic potential of psycholinguistic dictionaries of different types. Journal of Psycholinguistics, 2023, no. 3 (57), pp. 36–60. https://doi.org/10.30982/2077-5911-2023-57-3-36-60. (In Russian)

50. Gao C., Shinkareva S.V., Desai R.H. SCOPE: The South Carolina psycholinguistic metabase // Behav. Res. Methods. 2023. V. 55, No 6. P. 2853–2884. https://doi.org/10.3758/s13428-022-01934-0.

51. Lukavský J. Emoční hodnocení testových slov jako rozšíření asociačního experimentu // Česk. Psychol. 2004. V. 48, No 3. P. 203–214.

52. Litvinova T.A., Panicheva P.V. Individual differences in the associative meaning of a word through the lens of the language model and semantic differential. Research Result. Theoretical and Applied Linguistics, 2024, vol. 10, no. 1, pp. 61–93. https://doi.org/10.18413/2313-8912-2024-10-1-0-5. (In Russian)

53. Bradley M.M., Lang P.J. Affective Norms for English Words (ANEW): Instruction manual and affective ratings // Technical Report C-1. Cent. Res. Pychophysiol., Univ. of Florida, 1999. 45 p.

54. Bestgen Y., Vincze N. Checking and bootstrapping lexical norms by means of word similarity indexes // Behav. Res. Methods. 2012. V. 44, No 4. P. 998–1006. https://doi.org/10.3758/s13428-012-0195-z.

55. Mandera P., Keuleers E., Brysbaert M. How useful are corpus-based methods for extrapolating psycholinguistic variables? // Q. J. Exp. Psychol. 2015. V. 68, No 8. P. 1623–1642. https://doi.org/10.1080/17470218.2014.988735.

56. Van Rensbergen B., Storms G., De Deyne S. Examining assortativity in the mental lexicon: Evidence from word associations // Psychon. Bull. Rev. 2015. V. 22, No 6. P. 1717–1724. https://doi.org/10.3758/s13423-015-0832-5.

57. Barber H.A., Otten L.J., Kousta S.-T., Vigliocco G. Concreteness in word processing: ERP and behavioral effects in a lexical decision task // Brain Lang. 2013. V. 125, No 1. P. 47–53. https://doi.org/10.1016/j.bandl.2013.01.005.

58. Buades-Sitjar F., Planchuelo C., Duñabeitia J.A. Valence, arousal and concreteness mediate word association // Psicothema. 2021. V. 33, No 4. P. 602–609. https://doi.org/10.7334/psicothema2020.484.

59. Solovyev V.D., Vol’skaya Yu.A., Toksubaeva A.A. Osgood parameter values for 1000 words of the Russian language. Research Result. Theoretical and Applied Linguistics, 2025, vol. 11, no. 1, pp. 72–106. https://doi.org/10.18413/2313-8912-2025-11-1-0-4. (In Russian)

60. Volskaya Yu.A. The specificity of lexical and grammatical categories of concreteness and abstractness in the Russian language: An experimental approach. Cand. Sci. (Philology) Diss. Kazan, 2023. 264 p. (In Russian)

61. Solovyev V.D., Volskaya Yu.A., Andreeva M.I., Zaikin A.A. Russian dictionary with concreteness/abstractness indices. Russian Journal of Linguistics, 2022, vol. 26, no. 2, pp. 515–549. https://doi.org/10.22363/2687-0088-29475. (In Russian)


Review

For citations:


Volskaya Yu.A. Associative dictionary: Methodology of creation and areas of application. Kazan Journal of Historical, Linguistic, and Legal Research. 2025;167(5-6):115-130. (In Russ.) https://doi.org/10.26907/2541-7738.2025.5-6.115-130

Views: 8

JATS XML


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2541-7738 (Print)
ISSN 2500-2171 (Online)